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Abstract: This study aims to analyze the effectiveness of the Halving Random Search Cross
Validation method as an alternative for hyperparameter optimization in machine learning
models compared to Grid Search Cross Validation and Random Search Cross Validation. The
dataset used is Internet Service Churn with four algorithms: KNN, Decision Tree, SVM, and
Gaussian Naive Bayes. The testing process involves 10-fold cross validation and three
repetitions to ensure the validity of the results. The experimental results show that Halving
Random Search Cross Validation is able to achieve competitive accuracy, precision, and
recall performance (difference < 0.5%) compared to Grid Search in most models, with
computational time savings of up to 62—74% on KNN, Decision Tree, and SVM. However, on
Gaussian Naive Bayes with a small hyperparameter space, this method is slower due to the
successive halving overhead. Random Search shows high speed but less stable on SVM and
Gaussian Naive Bayes. The research conclusion states that Halving Random Search Cross
Validation is the most balanced method for business cases such as churn prediction, with
recommendations for application on complex models and further development using
Hyperband or Bayesian Optimization.
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Introduction

In the current digital era, machine learning is used in various industrial applications from
health, finance, to telecommunications. The performance of the model is highly determined
by the optimal hyperparameter configuration. However, the hyperparameter tuning process
on large-scale datasets often takes a lot of time and computational resources, especially when
using traditional methods like Grid Search Cross Validation which evaluates all parameter
combinations.

Some previous studies have compared hyperparameter optimization methods. Bergstra
and Bengio (2012) showed that Random Search Cross Validation is much more efficient than
Grid Search on large search spaces. Li et al. (2018) then introduced Successive Halving and
Hyperband as resource allocation-based approaches that can drastically reduce model
evaluation time. scikit-learn since version 0.24 has implemented Halving Random Search
Cross Validation as a combination of both, but empirical studies comparing the performance
and efficiency of Halving Random Search Cross Validation directly with Grid Search and
Random Search on various machine learning algorithms are still very limited.

The novelty of this research lies in the comparative analysis of Halving Random Search
Cross Validation compared to Grid Search and Random Search using four different algorithms
(KNN, Decision Tree, SVM, Gaussian Naive Bayes) on a telecommunications churn dataset
(72,274 rows), with a dual focus on computational time efficiency and performance metrics
(accuracy, precision, recall).
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The objective of this research is to analyze and prove that Halving Random Search Cross
Validation can provide an optimal balance between computational time efficiency and model
quality in customer churn prediction cases, so it can be recommended as a standard
hyperparameter tuning method in industrial environments with limited computational
resources.

Method

The data collection procedure follows the CRISP-DM (Cross-Industry Standard Process
for Data Mining) framework as a systematic reference (Nila et al., 2023), starting from the
Business Understanding stage which focuses on evaluating the effectiveness of Halving
Random Search Cross Validation compared to other methods, followed by Data
Understanding to understand the churn dataset, and Data Preparation through the removal
of empty data and normalization using Min-Max Scaler. In the Modeling stage,
hyperparameter optimization is performed on four algorithms (KNN, Decision Tree, SVM, and
Gaussian Naive Bayes) with 10-fold cross validation, where Grid Search and Random Search
use discrete hyperparameter ranges as in Table 1 with a total of 456 combinations for Grid
and 46 iterations for Random equivalent to 10% of the total, while Halving uses continuous
distributions such as loguniform and randint in Table 2 for a wider search space. Each
experiment is repeated three times to obtain average values.

Table 1. List Hyperparameter 1

Number of unique

Model Hyperparameter Value combinations
n_neighbor 3,5,7,9,11,13,15,17, 19, 21
algorithm 'ball_tree', 'kd_tree'
KNN weight uniform, distance 200 Combinations

'cityblock’, 'cosine’, 'euclidean’,

metric 'manhattan’, 'nan_euclidean'
Decision criterion 'gini', 'entropy', dan 'log_loss'
eTcr:eo max_depth None, 3, 5,7, 8, 9, 10, 15, 20, 25 240 Combinations
min_sample_leaf 10, 20, 30, 40, 50, 100, 200, 500
C 0.001, 1.0 N
SVM . o , 6 Combinations
kernel linear', 'rbf', 'poly
Gaussian ) 0.001, 0.00316, 0.01, 0.0316, 0.1, o
Naive Bayes Var_smoothing 0.316, 1.0, 3.16, 10.0, 100.0 10 Combinations
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Table 2. List Hyperparameter 2

Number of unique

Model Hyperparameter Value combinations
n_neighbor ‘randint(3, 30)’
algorithm 'ball_tree', 'kd_tree'
KNN weight uniform, distance 810 Combinations
. ‘cityblock’, 'cosine’, 'euclidean’,
metric , N ) .
manhattan’, 'nan_euclidean
Decision criterion ’glnl, entropy’, Iog_’loss o
Tree max_depth [None, range(3, 26)] 37,500 Combinations
min_sample_leaf ‘randint(10, 501)’
C ‘1 if le-3, le2)’
SVM loguniform(le-3, 1e2) Unlimited
kernel linear', 'rbf', 'poly
Gaussian
Naive Bayes var_smoothing ‘loguniform(le-3, 1e2)’ Unlimited

Results and Discussion
1. Dataset Exploration Results
The data exploration results show that the dataset consists of 72,274 data points, 10
features, and 1 label with a relatively balanced class distribution (55.4% churn and 44.6% non-
churn). Correlation analysis shows that subscription duration and remaining contract are
negatively correlated with churn. Some features have outliers, but they are retained because
they represent real customer conditions.
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Figure 1. Heatmap of Correlations Between Features
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2. Dataset Pre-Processing

The data is cleaned of missing values with median imputation on remaining contract
and average on download average and upload average. The id feature is removed because it
is not predictively relevant. All numeric features are normalized using Min-Max Scaling to the

range 0-1. The dataset is then split into 90% training data and 10% test data.

3. Training Process
The selected models are KNN, Decision Tree, SVM, and Gaussian Naive Bayes.
Hyperparameter optimization is performed with three methods, namely Grid Search Cross
Validation, Random Search Cross Validation, and Halving Random Search Cross Validation
using 10-fold cross validation. Each experiment is repeated three times, and computational
time is measured using the perf_counter function to measure the time required by each

method.

Table 3. Grid Search Cross Validation Method

Model

el
c
>

Time
(seconds)

Accuracy

Precision

Recall

KNN

Decision
Tree

SVM

GNB

W NEFE WNEFE WNEFE WN -

1540.61
1556.37
1577.01
487.07
484.42
483.17
7319.16
6892.50
6501.26
2.22
291
2.13

0.9208

0.9395

0.8312

0.7522

0.9254

0.9505

0.8156

0.7927

0.9301

0.9382

0.8929

0.74

Table 4. Random Search Cross Validation Method

Model

X
c
>

Time
(seconds)

Accuracy

Precision

Recall

KNN

Decision
Tree

SVM

GNB

W NN B WNRRP WON R WN R

301.37
299.22
309.18
44.67
43.86
44.56
1121.51
1261.76
1014.56
0.87
0.35
0.34

0.9208

0.9392

0.7721

0.5464

0.9254

0.9509

0.74832

0.5464

0.9301

0.9372

0.8784

1.0
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Conclusion

Based on the test results, Halving Random Search Cross Validation has proven to
provide an optimal balance between model quality and computational time efficiency
compared to Grid Search Cross Validation and Random Search Cross Validation methods.
Halving Random Search significantly reduces computational time in most models, especially
on SVM, Decision Tree, and KNN. Although on Gaussian Naive Bayes this method becomes
relatively slower due to the successive halving overhead on a narrow hyperparameter space.
Overall, this method is able to achieve an accuracy difference of less than 0.5% compared to

Table 5. Halving Random Search Cross Validation Method

Time

Model Run (seconds)

Accuracy

Precision Recall

419.95
412.06
411.08
182.32
187.44
186.31
1804.39
1800.82
1794.14
204.32
200.98
206.03

KNN

Decision
Tree

SVM

GNB

W N P WN PR WNRFP WN B

0.9197

0.9389

0.8281

0.7281

0.9261 0.9270

0.9474 0.9405

0.8099 0.8956

0.8857 0.5769

Grid Search and computational time savings of 62—74%.
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Figure 2. Comparison of Accuracy, Precision, and Recall
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